静电偏转器高阶像差的三维微分代数计算

2014-07-27 康永锋 西安交通大学电子物理与器件教育部重点实验室

  本文研究了静电偏转器高阶像差在三维空间的微分代数计算。利用有限元方法计算了静电偏转器电场的三维分布,通过三维数据拟合方法构造电磁场分布的三维局部解析式,将电场量转化为微分代数扩展数,利用微分代数方法分析计算偏转系统直至五阶的像差。验证了数据拟合方法的精度和可靠性,结果表明该方法具有非常高的精度,真空技术网(http://www.jnannai.com/)认为完全可以满足工程设计分析的需要。编写了相关的计算软件,具体分析计算了一个八瓣电极偏转器直至五阶的几何像差。

  偏转器的高阶像差的研究是设计和分析高分辨率扫描偏转系统的关键技术。实际上各种偏转器的电场和磁场都是三维的,并不具有通常二维系统的平面对称或者旋转对称性。过去,鉴于三维场分析和计算的困难,偏转系统的分析和计算都借助于空间谐波分析或多极场展开的方法,将三维问题化为二维问题进行逐次近似分析计算。而多极场的展开必然会引入相应的误差,具有局限性; 另外利用逐次近似法计算和分析偏转器的高阶像差繁琐且难于实现。

  近年来,随着计算机硬件和计算方法两方面的巨大进展,使得三维电磁场的计算和电子轨迹追踪能够实现。鉴于三维计算的普遍性及其可能实现的高精度,本文研究直接在三维空间利用有限元方法对多极场的电磁场分布进行计算,进而利用微分代数方法计算其电子光学性质和高阶像差。偏转器的三维计算避免了多极场展开带来的附加计算误差,并简化了计算程序。过去的微分代数电子光学方法只能对电子光学系统进行二维计算,具有局限性。而我们的研究工作将微分代数电子光学方法拓展至了三维计算,除了文中计算示例中的偏转器以外,此方法还可以应用于其它多极系统的分析和计算,例如由多极透镜组成的球差与色差校正器,和由于系统的旋转对称性遭到破环的电子透镜的轴上象散和容差分析问题。

结论

  本文提出了一种可计算实际偏转器的三维数值计算方法。利用有限元方法计算得到偏转器的三维电磁场分布; 通过对电磁场量的离散数组进行三维高次插值构建电磁场的三维局部解析表达式,可获得系统空间任一点的电磁场量,实现了电磁场量的微分代数扩展数的表达; 使用微分代数方法分析计算了静电偏转系统的高斯性质和高阶像差。以一个具有解析表达式的静电透镜为例,验证了这种计算方法的精度以及可靠。编写了相应的计算软件,具体分析计算了一个八极静电偏转系统,计算了这个偏转系统的偏转灵敏度以及直至五阶的电子光学像差系数。该方法避免了电磁场量级数展开时带来的误差,精度只受限于机器精度和插值算法的精度。此研究工作对电子束显微技术、电子束曝光技术以及IC 电子束检测技术等高分辨率扫描偏转系统的设计和研制具有很大的使用价值。